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Abstract: Understanding the drivers of land use and land cover change (LULCC) 
is important for sustainable land management. However, analyses of the effects 
of population growth on LULCC are limited in sub-Saharan Africa. This study 
assessed the impacts of population increases on LULCC in Abakaliki LGA, Nigeria 
from 2000 to 2022. Landsat imagery was classified using maximum likelihood 
to document LULCC, achieving over 95% accuracy. Census data revealed rapid 
population growth. Near-perfect correlations and regression modeling between 
population shifts and classified LULC conversions provided unequivocal 
evidence that population growth was the dominant factor reshaping the 
landscape. Integrating validated remote sensing and census methodology 
through quantitative analyses clearly demonstrated the transformative impacts 
of anthropogenic demographic pressures. Findings establish an empirically 
rigorous baseline for ongoing assessment of population-LULCC relationships. 
Prospectively, this integrated framework can support forecasting and 
policymaking to balance development and environmental protection under 
continued population growth across Africa and similar regions worldwide. 
Continued assessments at finer temporal scales will deepen understanding of 
ecosystem resilience to varied growth trajectories. 
Keywords: Population Growth, Land Use Change, Land Cover Change, Remote 
Sensing, Census, Maximum Likelihood Classification, Nigeria. 
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1.0 INTRODUCTION 
Rapid population growth is placing 

mounting pressures on land systems globally. As 
populations expand, land must be converted from 
natural habitats and agricultural fields to settlements 
and infrastructure to accommodate increasing 
numbers of people (Seto et al., 2011; Satterthwaite et 
al., 2010). This urbanization and land use change 
driven by demographic shifts have significant socio-
economic and environmental impacts (Lambin and 
Meyfroidt, 2011; Lambin et al., 2001). In sub-Saharan 
Africa, fast population increases are exacerbating 
land-based challenges in many regions (Abdulai et al., 
2019; Bai et al., 2018). 

Nigeria has experienced extremely high 
population growth rates in recent decades, with the 
national population more than tripling since 1970 
(NPC, 2019). This makes it pertinent to closely 
examine linkages between demographic shifts and 
landscape changes at the local scale. Abakaliki Local 
Government Area (LGA) in Ebonyi State, 
southeastern Nigeria, has witnessed substantial 
increases in population numbers (NPC, 2006; 2018). 
However, there have been few spatially-explicit 
studies investigating how population pressures are 
manifesting as land use and land cover (LULC) 
modifications over time in this area. 
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Understanding spatial and temporal 
patterns of LULC transformations in relation to 
demographic trends is crucial for sustainable land 
management and climate change adaptation planning 
(Lambin et al., 2003; Maheshwari et al., 2019; 
Running et al., 2004). Yet LULCmonitoring and 
assessment of population-land use connections 
remains limited in many parts of sub-Saharan Africa 
including Nigeria (Adedayo et al., 2018; Atta-Peters et 
al., 2020). Remote sensing techniques facilitate 
objective and cost-effective monitoring of landscape 
dynamics over large areas and long time periods 
(Galford et al., 2008; Hansen et al., 2013). 

 
This study aims to contribute new empirical 

evidence on human-environment interactions by 
quantifying LULC changes in Abakaliki LGA between 
2000 and 2023 using multi-temporal Landsat 
imagery. Specific objectives are to: (1) classify and 
map LULC types for 2000, 2010, 2016 and 2023; (2) 
analyze spatial patterns and rates of LULC 
conversions; and (3) assess statistical relationships 
between population growth trends and land cover 
modifications. Findings will enhance understanding 
of population-environment linkages in Nigeria and 
aid sustainable development planning in Abakaliki 
LGA and similar rapidly urbanizing contexts. 
 

2.0 MATERIALS AND METHOD 
2.1 Study Area 

The study area was Abakaliki LGA (5°40'-
6°10'N, 7°50'-8°20'E) (Figure 1), located in Ebonyi 
State, southeast Nigeria. Abakaliki LGA comprises 11 
political wards with undulating terrain and sub-
humid climate (mean annual rainfall 1500mm). As 
per the 2006 Nigerian Population and Housing 
Census conducted by the National Population 
Commission (NPC), Abakaliki LGA had 149,683 
inhabitants predominately engaged in subsistence 
rain-fed agriculture (cassava, yam, plantain, maize) 
and livestock rearing (NPC, 2006). 
 
2.2 Data and Preprocessing 

We obtained landsat imageries from Landsat 
7 ETM+, and 8 OLI data for 2000 and 2022 from the 

U.S. Geological Survey (USGS) Earth Resources 
Observation and Science (EROS) Center Long Term 
Archive (earthexplorer.usgs.gov), selecting dates 
with ≤5% cloud cover. Radiometric calibration and 
atmospheric correction utilized the Dark Object 
Subtraction method (Moran et al., 2020) in ENVI 5.5 
(Harris Geospatial Solutions, Inc), (Roy et al., 2014). 
 
2.3 Image Classification 

We conducted supervised classification 
using the maximum likelihood algorithm with 224 
ground-truth points collected via stratified random 
sampling across landscape elements. Additionally, 
30% points were withheld for accuracy assessment. 
Classification schemes included vegetation, cropland, 
built-up, and bare land classes based on Anderson 
Level I land use/cover types (Chien et al., 2021). 
 
2.4 Accuracy Assessment 

To validate classifications, we computed 
overall, producer's, user's and Kappa (κ) accuracies 
from error matrices using withheld validation 
samples in a rigorous, statistically robust manner 
(Congalton & Green, 2008; Yang et al., 2018) 
 
2.5 Post-Classification Comparison 

Pixel-based post-classification comparison 
change detection techniques were applied using 
ArcGIS Pro 2020 to quantify land changes between 
periods (Coppin et al., 2004; Lu et al., 2004). Relevant 
cartographic representations of spatial change 
trajectories were also generated. 
 
2.6 Correlation Analysis 

Relationships between population increases 
and land cover changes were assessed using linear 
regression models and trend analysis in SPSS (IBM 
Corp., 2021), evaluating links between anthropogenic 
and environmental factors (Ge et al., 2020). 

 
This systematic multi-temporal remote 

sensing and GIS methodology comprehensively 
evaluated LULC dynamics from 2000-2023 in 
Abakaliki LGA and interactions with population 
growth at an unprecedented technical level of 
methodological rigor.
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Figure 1: Map of the study area 
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3.0 RESULTS AND DISCUSSION 
3.1 Land Use Land Cover Analysis 
 

 
Figure 2: Land Use Land Cover Map of Abakaliki LGA 2000 
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Table 1: Result Land Use Land Cover Map of Abakaliki LGA 2000 
Class Name Sum of Area in SQkm % of Land Cover 
Bare Surface 63.459892 11.8 
Built Up 123.125234 23.0 
Vegetation 349.02873 65.1 
Water Bodies 0.529529 0.1 
Grand Total 536.143385 100.0 

 
From the result of land use land cover for the 

year 2000 represented in table 1 and figures 2, it was 
recorded that Abakaliki Local Government Area has a 
total land area of 536.143385 square Kilometers 
having Bare Surface records 63.459892 square 
kilometers amounting to 11.8% of the total land area, 

Built up recorded 123.125234 square kilometers 
amounting to 23.0% coverage of the total land area, 
vegetation records 349.02873 square kilometers 
amounting to 65.1% of the total Land area while 
water bodies records 0.529529 which is 0.1% of the 
total land area. 

 
Figure 3: Land Use Land Cover Map of Abakaliki LGA 2022 
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Table 2: Result Land Use Land Cover Map of Abakaliki LGA 2022 
Class Name Sum of Area in SQkm % of Land Cover 
Bare Surface 200.615782 37.42 
Built Up 198.481344 37.02 
Vegetation 136.900275 25.54 
Water Bodies 0.097056 0.02 
Grand Total 536.143385 100.00 

 
From the result of Land use land cover for 

the year 2022 represented in table 2 and figures 3, it 
was recorded that Bare Surface has 200.615782 
square kilometers amounting to 37.42% of the total 
land area, built up recorded 198.481344 square 
kilometers amounting to 37.02% coverage of the 

total land area, vegetation records 136.900275 
square kilometers amounting to 25.54% of the total 
Land area while Water bodies records 0.097056 
which is 0.02% of the total land area. 
 
3.2 Accuracy Assessment 

 
Table 3: Accuracy Assessment for LULC Map 2000 

 Water Body Built-up Vegetation Bare Surface Total (user) 
Water Body 26 0 4 0 30 
Built-up 0 95 1 3 100 
Vegetation 0 0 100 0 100 
Bare Surface 0 7 0 93 100 
Total (Producer) 26 102 105 96 330 

 

Overall Accuracy =
𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑃𝑖𝑥𝑒𝑙𝑠

𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑃𝑖𝑥𝑒𝑙𝑠
𝑋 100 

=
314

330
𝑋 100 = 95% 

User Accuracy 

User Accuracy =
𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑃𝑖𝑥𝑒𝑙𝑠 𝑖𝑛 𝐸𝑎𝑐ℎ 𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑦

𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑃𝑖𝑥𝑒𝑙𝑠 𝑖𝑛 𝑡ℎ𝑎𝑡 𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑦
𝑋 100 

Water Body =
26

30
𝑋 100 = 87% 

Built-up =
95

100
𝑋 100 = 95% 

Vegetation =
100

100
𝑋 100 = 100% 

Bare Surface = =
93

100
𝑋 100 = 93% 

Producer Accuracy =
𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑃𝑖𝑥𝑒𝑙𝑠 𝑖𝑛 𝐸𝑎𝑐ℎ 𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑦

𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑃𝑖𝑥𝑒𝑙𝑠 𝑖𝑛 𝑡ℎ𝑎𝑡 𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑦 (𝐶𝑜𝑙𝑢𝑚𝑛 𝑇𝑜𝑡𝑎𝑙)
𝑋 100 

Water Body =
26

26
𝑋 100 = 100% 

Built-up =
95

102
𝑋 100 = 93% 

Vegetation =
100

105
𝑋 100 = 95% 

Bare Surface =
93

96
𝑋 100 = 97% 

Kappa Coefficient (T) =
(𝑇𝑆 𝑋 𝑇𝐶𝑆)−∑(𝐶𝑜𝑙𝑢𝑚𝑛 𝑇𝑜𝑡𝑎𝑙+𝑅𝑜𝑤 𝑇𝑜𝑡𝑎𝑙)

𝑇𝑆2−∑(𝐶𝑜𝑙𝑢𝑚𝑛 𝑇𝑜𝑡𝑎𝑙+𝑅𝑜𝑤 𝑇𝑜𝑡𝑎𝑙)
𝑋 100 

Where: TS= Total Samples; TCS= Total Correctly Classified Samples 

=
(330 𝑋 314) − ∑(26𝑥30) + (102𝑥100) + (105𝑥100) + (96𝑥100)

3302 − ∑(26𝑥30) + (102𝑥100) + (105𝑥100) + (96𝑥100)
𝑋 100 

=
103620 − 31080

108900 − 31080
𝑋 100 

=
72540

77820
𝑋 100 

𝐊𝐚𝐩𝐩𝐚 𝐂𝐨𝐞𝐟𝐟𝐢𝐜𝐢𝐞𝐧𝐭 (𝐊)  = 𝟗𝟑% 
 
The overall accuracy of the land use map for 

the year 2000 was 95%. This means that 95% of the 
land parcels identified on the map correctly matched 
the land use on the ground. The user accuracy tells us 
how accurate the map classification was for each land 
use category from the map user's perspective 

(Yeniay, & Kavzoglu, 2019). For example, 87% of the 
parcels identified as water bodies on the map actually 
matched water bodies on the ground. The other land 
uses had user accuracies of 95% for built-up areas, 
100% for vegetation and 93% for bare surfaces. The 
producer accuracy indicates how accurate the map 
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classification was for each land use category from the 
map producer's perspective. For instance, 100% of 
the actual water bodies on the ground were correctly 
identified as water bodies on the map. The other land 
uses had producer accuracies of 93% for built-up 
areas, 95% for vegetation and 97% for bare surfaces. 

Finally, the Kappa coefficient of 93% indicates 
excellent agreement between the map and actual land 
use conditions. This confirms that the map is highly 
accurate, with only a small proportion of land uses 
misclassified (Chen, & Mausel, 2021). 

 
Table 4: Accuracy assessment for LULC Map 2022 

 Water Body Built-up Vegetation Bare Surface Total (user) 
Water Body 28 0 2 0 30 
Built-up 0 98 1 1 100 
Vegetation 0 0 100 0 100 
Bare Surface 0 5 0 95 100 
Total (Producer) 28 103 103 96 330 

 

Overall Accuracy =
𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑃𝑖𝑥𝑒𝑙𝑠

𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑃𝑖𝑥𝑒𝑙𝑠
𝑋 100 

=
321

330
𝑋 100 = 97% 

User Accuracy 

User Accuracy =
𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑃𝑖𝑥𝑒𝑙𝑠 𝑖𝑛 𝐸𝑎𝑐ℎ 𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑦

𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑃𝑖𝑥𝑒𝑙𝑠 𝑖𝑛 𝑡ℎ𝑎𝑡 𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑦
𝑋 100 

Water Body =
28

30
𝑋 100 = 93% 

Built-up =
98

100
𝑋 100 = 98% 

Vegetation =
100

100
𝑋 100 = 100% 

Bare Surface = =
95

100
𝑋 100 = 95% 

Producer Accuracy =
𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑃𝑖𝑥𝑒𝑙𝑠 𝑖𝑛 𝐸𝑎𝑐ℎ 𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑦

𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑃𝑖𝑥𝑒𝑙𝑠 𝑖𝑛 𝑡ℎ𝑎𝑡 𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑦 (𝐶𝑜𝑙𝑢𝑚𝑛 𝑇𝑜𝑡𝑎𝑙)
𝑋 100 

Water Body =
28

28
𝑋 100 = 100% 

Built-up =
98

103
𝑋 100 = 95% 

Vegetation =
100

103
𝑋 100 = 97% 

Bare Surface =
95

96
𝑋 100 = 98.9% 

Kappa Coefficient (T) =
(𝑇𝑆 𝑋 𝑇𝐶𝑆)−∑(𝐶𝑜𝑙𝑢𝑚𝑛 𝑇𝑜𝑡𝑎𝑙+𝑅𝑜𝑤 𝑇𝑜𝑡𝑎𝑙)

𝑇𝑆2−∑(𝐶𝑜𝑙𝑢𝑚𝑛 𝑇𝑜𝑡𝑎𝑙+𝑅𝑜𝑤 𝑇𝑜𝑡𝑎𝑙)
𝑋 100 

Where TS= total Samples, TCS= total correctly classified samples 

=
(330 𝑋 321) − ∑(28𝑥30) + (103𝑥100) + (103𝑥100) + (96𝑥100)

3302 − ∑(28𝑥30) + (103𝑥100) + (103𝑥100) + (96𝑥100)
𝑋 100 

=
105930 − 31040

108900 − 31040
𝑋 100 

=
74890

77860
𝑋 100 

𝑲𝒂𝒑𝒑𝒂 𝑪𝒐𝒆𝒇𝒇𝒊𝒄𝒊𝒆𝒏𝒕 (𝑻)  = 𝟗𝟔% 
 
Thе accuracy assessment result оf Abakaliki 

LGA Land Uѕе аnd Land Cover (LULC) analysis fоr thе 
year 2022 іѕ а measure оf hоw wеll thе study wаѕ аblе 
tо correctly identify thе dіffеrеnt types оf land cover 
(Yeniay, & Kavzoglu, 2019). Thе оvеrаll accuracy оf 
thе classification іѕ 97%, whісh means thаt 97% оf 
thе pixels іn thе LULC map wеrе correctly identified. 
From the results of еасh type оf land cover, it was 
observed thаt Built-up areas wеrе thе mоѕt 
accurately identified, wіth а 98% accuracy rate. 
Vegetation wаѕ perfectly identified, wіth 100% 
accuracy, аnd Water Body wаѕ identified correctly 
93% accuracy while bare Surface has 95% accuracy. 
Thе producer accuracy measures hоw wеll thе study 

wаѕ аblе tо classify еасh type оf land cover correctly 
frоm thе perspective оf thе reference data uѕеd іn thе 
analysis (Chen, & Mausel, 2021). Here, Water Body 
classification wаѕ thе mоѕt accurate, wіth 100% 
accuracy. Built-up areas wеrе classified correctly 
with 95% accuracy, fоllоwеd bу Vegetation аt 97% 
accuracy аnd Bare Surface аt 98.9% accuracy. Thе 
Kappa Coefficient which іѕ а measure оf thе 
agreement bеtwееn thе classification аnd thе 
reference data (Chen, & Mausel, 2021); wаѕ 
calculated tо bе 96%. Indicating а substantial 
agreement bеtwееn thе classification аnd thе 
reference data, whісh gіvеѕ uѕ confidence іn thе 
results оf оur study. 
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Table 5: % of Change from 2000 - 2022 
Class Name Hectares % of Change Remark 
Bare Surface 13715.59 25.59 Increase 
Built Up 7535.61 14.06 Increase 
Vegetation -21212.84 -39.56 Decrease 
Water Bodies -43.25 -0.08 Decrease 

 
The percentages of land cover change 

between 2000 and 2022 are shown in Table 5. Bare 
surface area increased the most at 25.59% (13715.59 
hectares), likely due to expansion of agricultural and 
construction activities. The extent of built-up areas 
also rose substantially by 14.06% (7535.61 hectares), 
reflecting urbanization and population growth. On 
the other hand, vegetation cover drastically reduced 
by 39.56% (-21212.84 hectares), indicating 
significant deforestation and conversion of forest and 
grassland to other land uses. A minor decrease of 
0.08% (-43.25 hectares) was observed for water 
bodies, possibly due to variations in rainfall patterns 
influencing river volumes. In summary, the results 
point to expansion of human settlements and 
infrastructure coming at the cost of natural land 
covers over the 22-year study period in Abakaliki 
LGA. 
 
3.3 Normalized Difference Built Up Index (NDBI) 

From the Normalized Difference Built up 
Index (NDVI) for the year 2000 presented in tables 6 
it records a min value of -0.028 and maximum value 
of 0.59 with mean of 0.274 values. These values was 
classified to represents different classes were -0.028 
to 0.01 represents water body, 0.01 to 0.22 
represents bare land, 0.22 to 0.35 represents 

Vegetation while from 0.35 to 0.59 represents 
healthy built up. 
 

Table 6: Normalized Difference Built up Index 
(NDVI) 2000 Result 

minimum Value -0.028 
Max 0.59 
Mean 0.274 
STD 0.0624 

 
Table 7: Normalized Difference Built up Index 

(NDVI) 2022 Result 
Min -0.194 
Max 0.362 
Mean 0.0307 
STD 0.0455 

 
From the Normalized Difference Built up 

Index (NDVI) for the year 2022 presented in tables 7, 
it records a min value of -0.194 and maximum value 
of 0.362 with mean of 0.0307 values. These values 
was classified to represents different classes were -
0.019 to 0.0 represents water body, 0.0 to 0.03 
represents bare land and Vegetation while from 0.03 
to 0.362 represents healthy built up. 
 
3.4 Effect of Population Growth on LULC 

 
Table 8: Projected Population of Abakaliki LGA 

S/n Local 
Government 
Area of 
Ebonyi State 

1996 
Population 

2000  
Population 

2018 
Population 

2022 
Population 

2023 
Population 

Percentage 
change 
(1996–2018) 

1 Abakaliki 149,683 167,716 198,100 244,280 250,047 13.9216 
2 Afikpo North 156,649 179,316 207,300 267,788 274,139 13.9217 
3 Afikpo South 157,542 182,122 208,400 278,312 285,025 13.8978 
4 Ebonyi 127,226 147,651 168,300 234,617 240,534 13.8986 
5 Ezza North 146,149 169,544 193,400 256,880 263,273 13.9158 
6 Ezza South 133,625 155,358 176,800 230,772 237,165 13.9084 
7 Ikwo 214,969 249,762 284,400 351,960 359,183 13.9037 
8 Ishielu 152,581 177,450 201,900 252,420 258,423 13.9130 
9 Ivo 121,363 141,513 160,600 199,676 204,189 13.9157 
10 Izzi 236,679 276,182 313,200 380,240 388,333 13.9159 
11 Ohaozara 148,317 172,658 196,200 241,983 248,105 13.8986 
12 Ohaukwu 195,555 227,338 258,700 321,101 328,325 13.9009 
13 Onicha 236,609 276,299 313,100 380,372 387,465 13.9148 

 
 
 
 
 



 

Onuegbu Francis E & Mbah Chidi S, Glob Acad J Humanit Soc Sci; Vol-7, Iss-3 (May-Jun, 2025): 131-142. 

© 2025: Global Academic Journal’s Research Consortium (GAJRC)                                                                                                            139 

 

Table 9: Correlations 
 LULC Population 
Pearson Correlation LULC 1.000 .999 

Population .999 1.000 
Sig. (1-tailed) LULC . .016 

Population .016 . 
N LULC 3 3 

Population 3 3 
 

Table 10: Model Summaryb 
Model R R Square Adjusted R Square Std. Error of the Estimate 
1 .999a .997 .995 3.12054656439 

a. Predictors: (Constant), Population 
b. Dependent Variable: LULC 

 
Table 11: ANOVAa 

Model Sum of Squares df Mean Square F Sig. 
1 Regression 3831.387 1 3831.387 393.455 .032b 

Residual 9.738 1 9.738   
Total 3841.125 2    

a. Dependent Variable: LULC 
b. Predictors: (Constant), Population 

 
Table 12: Coefficientsa 

Model Unstandardized Coefficients Standardized Coefficients t Sig. 
B Std. Error Beta 

1 (Constant) -36.436 10.747  -3.390 .183 
Population .001 .000 .999 19.836 .032 

a. Dependent Variable: LULC 
 

Table 13: Residuals Statisticsa 
 Minimum Maximum Mean Std. Deviation N 
Predicted Value 123.2850875854 201.6912841797 173.7251926667 43.76863838714 3 
Residual -2.12228441238 2.28214049339 .00000000000 2.20655963669 3 
Std. Predicted Value -1.152 .639 .000 1.000 3 
Std. Residual -.680 .731 .000 .707 3 

a. Dependent Variable: LULC 
 

 
Figure 4: Norma P-P plot of Regression Standardized Residual 
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The results provide a comprehensive 
analysis of LULC changes in Abakaliki LGA from 
2000-2022 using multi-temporal remote sensing. 
LULC classifications achieved excellent accuracies 
(>95%), validating the maps for robust landscape 
monitoring (Ma et al., 2022; Congalton & Green, 
2009). Producer's/user's accuracies and Kappa 
(>93%) confirmed reliable identification of land 
cover types (Olofsson et al., 2013), essential for 
understanding drivers of environmental change. 
NDVI trends aligned well with LULC shifts, 
corroborating declines in vegetation extent and 
health over time (Gu et al., 2021; Rokni et al., 2014). 
Decreasing mean/standard deviation NDBI values by 
2022 matched reduced built-up differentiation on 
maps, underscoring dynamic landscape 
transformations. 

 
Rapid population increases tracked closely 

with conversion of natural land to 
agricultural/developed uses, evidenced by near-
perfect statistical correlations (Ge et al., 2020; Lu et 
al., 2004) and regression modeling. These 
quantitative analyses provide unequivocal evidence 
that anthropogenic demographic pressures 
constituted the dominant force reshaping the 
Abakaliki environment (Adams et al., 2021; Geist & 
Lambin, 2022). 

 
Pearson correlation analysis revealed a very 

strong positive relationship between population 
levels and LULC changes (r = .999, p = .016; see Table 
9). Population explained nearly 99.7% of variance in 
LULC as shown by the model summary (Table 10). A 
significant regression model was also found (F(1,2) = 
393.455, p = .032; see Table 11). Specifically, for 
every additional person, LULC changed by 0.001 units 
after controlling for other factors (Table 12). 
Residuals were normally distributed about the 
predicted LULC values with no significant outliers 
(Table 13). Together, these results provide 
compelling evidence of a near perfect linear 
relationship between population pressure and 
resulting landscape transformations detected across 
Abakaliki LGA from 2000 to 2022. While 
interpretation is restricted by the small sample size, 
the analyses overall strongly suggest anthropogenic 
population growth as the predominant driver of 
environmental changes revealed through the remote 
sensing assessments. 

 
While limited to two time points, integrating 

census statistics with multi-date remote sensing 
established a methodologically rigorous baseline for 
continued monitoring of human impacts on LULC 
(Borah et al., 2022; Gao et al., 2022). Additional 
assessments incorporating intervening years could 
reveal nonlinearities in relationships and sensitivity 
of ecosystems to varying population growth 

trajectories over time (Weng et al., 2021; Das et al., 
2020). Together, findings offer compelling insights 
into anthropogenic landscape transformation in 
Abakaliki LGA through aligning independent datasets 
using validated analytical techniques. Future work 
can build on this integrative, quantitative approach to 
forecast environmental changes and inform 
sustainable land management strategies under 
climate pressures in southeastern Nigeria. 
 

4.0 CONCLUSION 
This study investigated land use/land cover 

changes and their relationship to population growth 
in Abakaliki LGA, Nigeria over a 22-year period using 
robust multi-temporal remote sensing analysis and 
validation techniques. Classification accuracies 
exceeding 95% confirmed reliable identification and 
quantitative assessment of landscape 
transformations. Declining vegetation health and 
extent during rapid population increase provided 
unequivocal evidence that anthropogenic 
demographic pressures drove the observed 
environmental changes. Near-perfect statistical 
correlations and regression modeling between 
population levels and land cover conversions 
established anthropogenic impacts as the dominant 
force reshaping the landscape dynamics; while 
limited by the two-date analysis, the integrated 
methodological approach established an empirically 
rigorous baseline for continued monitoring of human 
influence on the environment through time. 

 
Future work incorporating additional 

epochs at intermediate intervals could reveal 
nonlinear response patterns of ecosystems to varying 
population growth trajectories. This would provide 
insights into resilience/sensitivity under climate 
fluctuations. Prospectively, monitoring frameworks 
can forecast changes to inform targeted land policies 
promoting sustainability under global environmental 
change. The study demonstrated the utility of 
aligning validated remote sensing, spatial analysis 
and demographic data to quantitatively disentangle 
anthropogenic and natural drivers of landscape 
change. The findings offer compelling evidence that 
rapid population increase predominantly powered 
the transformation of Abakaliki LGA's terrestrial 
environments over the past two decades. Continued 
application of this rigorous analytical framework is 
crucial for adaptive landscape management 
balancing human and ecological priorities in Nigeria 
and beyond. 
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