Global Academic Journal of Medical Sciences

Available online at www.gajrc.com **DOI:** https://doi.org/10.36348/gajms.2024.v06i05.009

ISSN: 2706-9036 (P) ISSN: 2707-2533 (O)

Original Research Article

Recent Progress and Current Status of Artificial Intelligence in Skin Cancer Diagnosis: A Systematic Review—Where do we Stand?

Rushin Patel (MD)^{1*}, Akash Jain (MD)², Anand Kadakia (MD)³, Afoma Onyechi (MD)⁴, Zalak Patel (MD)⁵, Eduzor Onyechi (MD)⁶, Mrunal Patel (MD)⁷, Jessica Ohemeng-Dapaah (MD)⁴, Darshil Patel (MD)⁸, Garcia Moncada (MD)⁹

¹Department of Internal Medicine, Washington University in St. Louis, MO, USA ²Department of Internal Medicine, Ascension via Christi Hospital, KS, USA ³Department of Internal Medicine, Washington University in St. Louis, MO, USA ⁴Department of Internal Medicine, SSM Health St Mary's Hospital, MO, USA ⁵Department of Internal Medicine, Washington University in St. Louis, MO, USA ⁶Department of Internal Medicine, SSM St Mary's Hospital, MO, USA ⁷Department of Internal Medicine, Trumbull Regional Medical Center, OH, USA ⁸Clinical Research Program, Graduate College, Rush University, IL, USA ⁹Department of Internal Medicine, SSM St Mary's Hospital, MO, USA

*Corresponding Author Rushin Patel Department of Internal Medicine, Washington University in St. Louis, MO, USA

Article History Received: 07.07.2024 Accepted: 10.08.2024 Published: 23.10.2024 Abstract: Introduction: Skin cancer is one of the most prevalent forms worldwide, with a significant increase in recent decades. Real-time and accurate detection can reduce the burdens of invasive treatments. The advent of Artificial Intelligence (AI) and Machine learning (ML) has introduced multiple tools to aid accurate and early detection, categorizing dermatological images and proving especially valuable in regions with a shortage of specialists. However, the adoption of these AI-based tools requires consideration of efficacy, safety, and ethical implications. **Objective:** The systematic review aims to evaluate existing research on the detection, categorization, and assessment of skin cancer images. Methods: The systematic literature review is conducted based on studies published from 2018 to 2023 in PubMed, Scopus, Embase, Web of Science, IEEE Xplore, ACM DL, and Ovid MEDLINE. Study selection, data extraction, and inclusion are carried out after a proper evaluation of the studies. Results are presented in tables and figures using a narrative synthesis. *Results:* The search identified 687 studies from the database. However, after three phases of identification, screening, and evaluation, only 16 studies were chosen, focusing on developing and validating AI tools to detect, diagnose, and categorize skin cancer. This systematic review covers the selected studies in multiple dimensions. Conclusion: The use of AI and ML in dermatology has revolutionized the early detection of cancer, but it is necessary to validate and collaborate with healthcare professionals to ensure efficacy, safety, and effectiveness.

Keywords: Skin Cancer, Artificial Intelligence, Machine Learning, Diagnosis, AI, ML, Detection, and Images.

Copyright © 2024 The Author(s): This is an open-access article distributed under the terms of the Creative Commons Attribution **4.0 International License (CC BY-NC 4.0)** which permits unrestricted use, distribution, and reproduction in any medium for non-commercial use provided the original author and source are credited.

Citation: Rushin Patel *et al* (2024). Recent Progress and Current Status of Artificial Intelligence in Skin Cancer Diagnosis: A Systematic Review—Where do we Stand? *Glob Acad J Med Sci*; Vol-6, Iss-5 pp- 269-279.

INTRODUCTION

The use of artificial intelligence (AI) and Machine learning (ML) in dermatology has increased significantly. The capacity of methods like convolutional neural networks and image processing to recognize particular features in photographs of skin lesions has been thoroughly investigated, potentially aiding in the identification of suspicious lesions and the diagnosis of diseases like melanoma [1].

Melanoma is the most severe and deadly type of skin cancer, yet basal cell carcinoma is the most prevalent variety, followed by squamous cell carcinoma [2, 3]. An additional feature of Merkel cell cancer is its aggressiveness. These tumors frequently show up in sun-exposed locations, highlighting the necessity of continuing campaigns to increase public awareness and prevent skin cancer [4]. Several factors, such as a weakened immune system, family history, and UV radiation exposure, contribute to skin cancer [4, 5].

Skin cancer incidence, including melanoma and non-melanoma skin cancers (NMSC), has significantly increased in recent years [6]. Over the past ten years, there has been an alarming 27% rise in the number of aggressive melanoma cases diagnosed annually in skin cancer, the most common type of cancer worldwide [7]. Over 5,400 people die each month from non-melanoma skin cancer, which incurs an estimated 1.1 billion dollars in annual financial costs in the US alone [8]. The World Health Organization (WHO) reports that 132,000 incidences of melanoma skin cancer (MSC) and 2 to 3 million cases of NMSC occur worldwide each year [9]. In 2018, there were 1,042,056 new cases of NMSC, of which 65,155 were fatal. 13,353 instances occurred in Southeast Asia, whereas 482,722 cases were reported in North America [10]. Additionally, cases of non-melanoma skin cancer, which are typically treated surgically, are commonly underreported. In 2020, 1,198,073 instances of non-melanoma skin cancer and 300,000 cases of melanoma were reported to the World Cancer Research Fund International [11].

The process of skin cancer diagnosis entails a complete assessment that includes obtaining a medical history, analyzing lesion progression, evaluating risk factors, and performing a thorough skin examination [12]. Conventional detection methods for skin cancer include visual assessment, biopsy, and tools like confocal microscopy and dermatoscopes. However, these methods have drawbacks, leading to increased reliance on mobile devices for sharing photos with physicians [13]. Histopathology is still the gold standard for verifying a diagnosis of skin cancer, although dermoscopy — a non-invasive diagnostic technique that uses a dermatoscope to examine pigmented skin lesions up close and help see the epidermis' skin components [14].

Given the challenges of operator-dependent dermoscopy, artificial intelligence (AI) emerges as a promising solution for skin cancer diagnosis. AI, a field of computer science simulating human thought, is increasingly utilized in dermatology, particularly for distinguishing melanoma from benign lesions and identifying malignancy [15]. Research comparing dermatologists and artificial intelligence (AI) frequently assesses the technology's performance using well-known metrics such as sensitivity and specificity as well as the area under the receiver operating characteristic curve (AUROC) [11].

Skin cancer detection faces cost and time challenges. AI technologies are increasingly used for faster and smarter detection and treatment planning. AI methods appear promising for their ease over traditional techniques. This study conducts a thorough literature analysis to identify the most recent AI-based skin cancer detection techniques, aiming to guide future research. By highlighting approaches and challenges, it offers clarity and aids researchers in assessing prior work, identifying gaps, and suggesting new directions.

METHODS

In this section, the chosen methodology for this systematic literature review is explained. A protocol was developed before the commencement of this review. To ensure the transparency and reproducibility of this review, we strictly adhered to the instructions and guidelines for the Preferred Reporting Items for Systematic Reviews and Meta-Analyses Extension (PRISMA).

Study Identification

Initially, the aims and objectives of this literature review were established, and the systematic review was conducted for articles between April 2018 and December 2023. The primary goal of this review was to highlight research involving the use of AI in skin cancer diagnosis and detection. Our aim was to understand the different methodologies used in past research and their outcomes regarding the use of AI in this regard. Articles were selected using various databases such as PubMed, Scopus, Embase, Web of Science, Institute of Electrical and Electronics Engineers (IEEE) Explore, Association for Computing Machinery Digital Library (ACM DL), and Ovid MEDLINE databases.

^{© 2024:} Global Academic Journal's Research Consortium (GAJRC)

Search Strategy

Different keywords and terms were used to search the bibliographic databases, such as: ("skin cancer" OR "skin lesion" OR "dermatology" OR "dermoscopy" OR "melanoma") AND ("artificial intelligence" OR "neural network*" OR "deep learning" OR "convolutional neural network*" OR "transfer learning" OR "machine learning" OR "computer-aided diagnostic*" OR "CAD" OR "image classification" OR "image processing" OR "Internet of things" OR "Data mining" OR "IoT") AND ("real-time" or "real-world" OR "smartphone") AND NOT ("Meta-Analysis" OR "Systematic Review").

Study Selection

In the second step, inclusion and exclusion criteria were established. For inclusion, articles were filtered based on relevance. Additionally, only articles written in English and published between April 2018 and December 2023 were considered. Exclusion criteria included abstract content, introduction screening, absence of references, research quality, journal reputation (h-index, impact factor), and research redundancy. The authors independently read the full-text papers selected for the study, resolving any disagreements through discussion. Intercoder agreement was assessed using Cohen's kappa (κ), yielding values of 0.86 for inspecting titles and abstracts and 0.93 for reading full texts, indicating good agreement. The initial search yielded 687 results, with 457 duplicates removed, leaving 230 studies for further eligibility evaluation.

Study Eligibility Criteria

For the third step, the screened articles from the second step were assessed for quality and relevance to determine their eligibility. The following criteria were followed:

- The study's abstract presents clear objectives, methodology, and results.
- The study is written in English.
- The study is published between 2018 and 2023.
- The study focuses on the use of AI-based solutions for skin cancer and is applicable to in-field clinical applications.
- The study reports the accuracy, sensitivity, specificity, and overall integrity of AI systems for skin cancer detection and diagnosis.
- The study holds a critical analysis of the outcomes obtained by the AI systems and addresses their biases and limitations.
- The study proposes a new AI method to progress further in the field.

No restrictions on the country of publication, study design, or outcomes were enforced to control bias.

Data Extraction

For data extraction, a spreadsheet was developed to document the data of each study, and a data extraction form was created. The following data were analyzed:

- Year of publication and the objective of the study.
- Types of data, data source, and quantity.
- Resources used to aid in the detection and identification of skin cancer.
- Techniques employed in the classification of skin lesions/cancer.
- Study methodology.
- Key findings and prospects.
- Data regarding ethnicity and genetic diversity of the population.
- System accessibility and availability.

Data Synthesis

The final phase of the study employed a narrative approach for synthesizing the extracted data, which was further divided into different steps. Initially, we grouped the included studies based on complexity for systematic analysis. Then, we combined the studies based on the evaluation metrics used. Additionally, we considered the datasets used, including the number and types of images and the number of diseases enlisted in the dataset. We assessed the correlation between accuracy and the number of images and diagnostic classes in the dataset.

RESULTS

In the first step, 7 databases were utilized to retrieve relevant studies using targeted keywords. A total of 687 studies were identified between 2018-2023. Subsequently, the exclusion process began in three phases. In the first phase, "identification", 473 studies were excluded due to duplication or being available in languages other than English. In the second phase, "screening", 214 studies were screened, and out of them, 85 were further excluded as they utilized tools other than AI or discussed diseases other than skin cancer. Titles and abstracts of 129 studies were screened, and 8 studies were not accessible. In the last phase, 121 studies were assessed for eligibility, and 105 were excluded due to factors such as unavailability of full-length papers or not discussing skin cancer detection. Studies with a nature other than research, such as case reports, review papers, and survey-based studies, were also excluded. Following critical evaluation, 16 studies were deemed eligible for inclusion in the further evaluation. Consequently, a total of 16 studies were included in the end. The PRISMA flow chart (Fig 1) was made based on the above information.

Fig. 1: PRISMA flow diagram

The characteristics of the selected studies are presented in Table 1. It is observed that a high percentage of studies selected for review were conducted between 2020 and 2021. Additionally, studies conducted in multiple countries are included, with 18.75% originating from the USA, while the majority are conducted in various other countries.

Table 1: Characteristics of the selected studie

Characteristics	Count (%)
Year of Publication	
2018-2019	3 (18.75)
2020-2021	10 (62.5)
2022-2023	3 (18.75)

© 2024: Global Academic Journal's Research Consortium (GAJRC)

Rushin Patel et al; Glob Acad J	Med Sci; Vol-6, Iss-5	6 (Sep-Oct, 2024): 269-279.
---------------------------------	-----------------------	-----------------------------

Characteristics	Count (%)
Country of Publication	
USA	3 (18.75)
Japan	1 (12.5)
Netherlands	1 (6.25)
Egypt	2 (12.5)
Saudi Arabia	1 (6.25)
Germany	1 (6.25)
India	2 (12.5)
Italy	1 (6.25)
Switzerland	1 (6.25)
Austria	1 (6.25)
Turkey	1 (6.25)
South Korea	1 (6.25)

The studies for systematic review with different years are given in Figure 2. It showed that the majority of the studies were published in 2020,

followed by 2021. The last articles published included in the review are seen in 2019 and 2023.

Figure 2: Published papers with respect to years

Advancements in Skin Lesion Analysis: Techniques, Processing, and Device Implementation:

In this section, we describe the tools used for image processing, the classification techniques employed, and the devices to which these methods were applied. The tools utilized in image processing manipulate images and extract features, ultimately preparing them for close examination. Classification algorithms play a crucial role in categorizing skin lesions based on obtained features, aiding in the identification different precise of classes. Additionally, these algorithms assist medical practitioners in clinical decision-making by selecting the best course of action. These methodologies ensure the effective application of diagnostic

procedures on photographs of skin lesions and the efficient execution of algorithms on various platforms, such as PCs, servers, or mobile devices.

Collecting this information from studies is crucial to guide the creation of efficient apps. This extraction enables the use of sensible preprocessing techniques, reliable classifiers, and suitable devices, ensuring precise identification and clinical evaluation of skin lesions. Table 2 summarizes information on the tools used for image processing, classification schemes, and the main research goals.

Several works highlight the implementation of image segmentation, feature extraction, and

classification techniques, including those by Togacar et al., Divya and Ganeshbabu et al., Udrea et al., Bakheet and Al-Hamadi, Abbas et al., Roy et al., Bakheet and El-Nagar, Pangti et al., Alizadeh and Mahloojifar, Francese et al., and Dorj et al., [5-24]. As demonstrated by the aforementioned research, these methods are crucial to the essential stages of processing skin lesion images, laving the groundwork for precise diagnosis determination. On the other hand, variations exist in the choice of classifiers and processing apparatus among various investigations. For example, Togaçar *et al.*, use the Support Vector Machine (SVM) method and Softmax method for classification with Inception-V3 and MobileNetV1 models, Divya and Ganeshbabu et al utilize a recurrent neural network (RNN), Udrea et al., employ an SVM classifier with a radial basis function kernel, Bakheet and Al-Hamadi et al., utilize a Multilevel Neural Network (MNN), Abbas et al., propose the Smart-Dermo system using a combination of image processing and clinical rules, incorporating a Fuzzy

technique for classification, Roy et al., use modern techniques like YOLOv2 (You Only Look Once version 2), and Pangti et al., Francese et al., Sangers et al., Jahn et al., Kränke et al., Nasiri et al., demonstrate sophisticated deep neural networks, such as Convolutional Neural Networks (CNNs), and Dorj et al., employ ECOC SVM (Error-Correcting Output Codes Support Vector Machine) with deep convolutional neural network features. This wide range of methods facilitates thorough comparison analysis and identification of the most promising approaches for skin tumor identification. Moreover, the detailed explanation of tools used and processing mechanisms provides insightful knowledge for effective application creation. Some research, like Udrea et al., Sangers et al., Jahn et al., Kränke et al., Dulmage *et al.*, lacks sufficient information regarding the resources used, making it difficult to fully understand the methodology employed in these studies [16-29].

Table 2: Overv	view of selected	d studies with res	spect to data (ty	/pe, sources, size, pro	cessing) and classifier

References	Data used	Data source	Size of Dataset	Data processing	Classifier
Togaçar <i>et al.,</i> [5]	Tumor images	ISIC website	3,297	Image reconstruction and	SVM and Softmax method for
	occurring on			feature	classification using
	the skin.			abstraction.	Inception-V3 and
					MobileNetV1 models.
Divya and	Dermoscopic	Standard PH2	900 (training),	Image pre-	Recurrent neural
Ganeshbabu	image.	dataset	379 (testing)	processing,	network (RNN).
et al., [8]				scaling,	
				segmentation, and	
				feature extraction.	
Udrea <i>et al</i> .,	Mobile	University	131,873	Pre-processing of	SVM classifier.
[16]	devices	Hospital of		images, division,	
	acquire	Munich and a		and feature	
	clinical	hospital in		abstraction.	
	images.	Eindhoven			
Bakheet and	Dermoscopy	'PH2' (public)	200	Pre-processing of	Multilevel Neural
Al-Hamadi	images.	dataset		images with skin	Network.
et al., [17]				injury division,	
				feature	
				abstraction, and	
				its classification.	
Abbas <i>et al</i> .,	Dermoscopy	Several	2,200	Pre-processing of	Smart-Dermo system
[18]	images.	private and		images with skin	using clinical rules
		public sources		injury division,	and Fuzzy technique.
				feature	
				abstraction, and	
				its classification.	
Roy et al.,	Dermoscopic	PH2 dataset	200	Image	YOLOv2.
[19]	images of			segmentation, data	
	skin lesions.			augmentation,	
				feature	
				calculation, and	
				classification.	

Rushin Patel et al; Glob Acad J Med Sci; Vol-6, Iss-5 (Sep-Oct, 2024): 269-279.

References	Data used	Data source	Size of Dataset	Data processing	Classifier
Bakheet and	Dermoscopy	'PH2 public'	200	Pre-processing of	Deep Neural
El-Nagar	images.	datasheet		images, adaptive	Network.
et al., [20]				division of injury,	
				and leature	
Pangti <i>et al</i>	Macroscopic	Public dataset	15 418	Pre-processing of	Convolutional Neural
[21]	Clinical	and Indian	10,110	images and	Networks.
	images.	dermatologists		optimization	
				resources.	
Francese	Mobile	Author	8,000	Pre-processing of	Convolutional Neural
et al., [23]	devices	created the		images, feature	Network.
	clinical	images.		CNN classification	
	images.			of nevus.	
Dorj et al.,	RGB images	Various	3,753	Image acquisition,	ECOC SVM with deep
[24]	of skin	internet sites		grouping, storage,	convolutional neural
	cancers.			and feature	network features.
Commente at al	Clinitael	The increasion	705	extraction.	Courselation of Normal
Sangers <i>et al.</i> ,	images from	Hospital in the	785	Not identified.	Network
[23]	mohile	Netherlands			Network.
	devices.	i tetitei laitas			
Jahn <i>et al.</i> ,	Mobile	Dermatology	1,204	Not identified.	Convolutional Neural
[26]	devices	Department at			Network.
	acquire	University			
	clinical	Hospital Basel			
Kränke <i>et al</i>	Mohile	Tertiary	1 1 7 1	Not identified	Two CNNs: classical
[27]	devices	reference	1,1,1	not nuclitude	CNN and region
	acquire	center in Graz,			proposal network-
	clinical	Austria			based CNN for
	images.				stratification.
Nasiri <i>et al.</i> ,	Dermoscopy	ISIC Archive	1,796	Feature	Convolutional neural
[28]	images.	dataset		generation and	network.
Dulmage	Clinical	Images	76.926	Not identified	Deen convolutional
<i>et al.</i> . [29]	images.	received from	70,920	Not identified.	neural network.
,	5	primary care			
		specialists			
Fujisawa	Skin tumor	Patient data	6,009	Pre-processing of	GoogLeNet DCNN
et al., [30]	digital	from Dormatalager		images and feature	(Google Inception
	images and	Dermatology		abstraction.	neural network)
	pigmented	University			
	skin lesions.	Hospital			

Summary of Key Findings and Future Directions in Skin Lesion Detection Research:

In this section, we summarize the main conclusions and recommendations derived from our comprehensive analysis of various studies. The leading classification results highlight the accuracy, sensitivity, and specificity attained by various approaches, providing a critical perspective for evaluating the validity of these methods in differentiating between benign and malignant skin lesions. Furthermore, the viewpoints highlight the

Within the field of medicine and healthcare, this data is an invaluable tool for physicians, assisting them in choosing the best courses of action for the early identification of cancerous skin lesions and

unique contributions made by each study, which

range from the effectiveness of real-time detection capabilities to the potential for comprehensive

screening in populations with restricted access to

dermatologists and the efficacy of deep learning

improving the accuracy and speed of diagnosis. Furthermore, these findings and viewpoints have important ramifications for the future creation of healthcare applications, directing current investigations and advancements in the field of dermatological artificial intelligence.

Examining Table 3 highlights the positive characteristics of recent advances in the use of machine learning and image processing for skin cancer application detection, classification, and assessment. These developments are noteworthy for their excellent sensitivity and specificity in identifying malignant tumors. Furthermore, the use of mobile applications offers an approachable screening method that is especially helpful for communities where dermatologists are not readily available.

However, it is crucial to emphasize the necessity of more thorough clinical validation, accounting for the testing phase and carrying out comparative analyses with conventional diagnostic techniques. Problems like device performance variance and the possibility of needless removals also need to be carefully considered. These developments are very promising, but in order to guarantee successful applications in medical practice, it is imperative to balance the benefits and drawbacks, placing a strong emphasis on the prioritization of continuing research and validations.

A thorough analysis of Table 3's findings suggests a promising future for the identification and treatment of skin cancer. Even if the highlighted studies demonstrate encouraging outcomes thus far, it is important to consider how they might affect the field's future situations. Among the studies reviewed, the YOLOv2 model, presented by Roy et al., stands out for effectively and efficiently detecting melanoma in dermoscopic pictures with remarkable precision and sensitivity, all accomplished in real-time processing, suggesting a future where efficient and rapid diagnosis of skin lesions becomes more commonplace [19]. Furthermore, Pangti et al.'s machine learning model exhibits versatility by achieving high accuracy in diagnosing 40 different types of skin lesions, displaying the potential for broader applications beyond melanoma detection [21]. Udrea *et al.*, provide a machine learning-based method that produces noteworthy results in terms of sensitivity and specificity and holds promise for shaping future diagnostic tools tailored for detecting melanomas and various carcinomas [16]. Francese et al.'s innovative integration of augmented reality and deep learning hints at a future where advanced technologies play a pivotal role in facilitating dermatological diagnosis [23]. Additionally, Multiple studies, including Togaçar et al., Udrea et al., Bakheet and El-Nagar *et al.*, and Sangers *et al.*, report high accuracy rates, sensitivity, and specificity in classifying skin lesions, supporting the reliability of these approaches [5-25].

Notably, even if Table 3's approaches show encouraging results, a significant portion of them are still in the testing and clinical validation phases. As several scholars have pointed out, it is, therefore, still crucial to maintain strict research guidelines and carry out exhaustive analyses. Before considering the extensive and practical integration of these approaches into medical practice, a cautious approach is necessary. Although these developments have the potential to completely change the early detection and diagnosis of skin cancer, thorough research and validations are required to guarantee their dependability and therapeutic effects.

Table 3: Results overview given with purpose and future scenarios					
References	Purpose	Results	Future Scenarios		
Togaçar	Classify tumor	Achieved a high success percentage of	Offers a helpful decision-support		
et al., [5]	images into benign	categorization surpassing previous	tool for skin cancer early		
	and malignant	approaches. Combining feature sets	detection and appropriate		
		derived from convolutional models.	treatment.		
Divya and	Improve accuracy	Demonstrated improved performance	Identifying melanoma skin		
Ganeshbabu	of melanoma	compared to other models in	cancer lesions accurately from		
et al., [8]	detection	identifying melanoma skin cancer.	dermoscopic pictures.		
Udrea <i>et al</i> .,	Classify skin	Achieved high sensitivity and	Assess potential utility for		
[16]	lesions into low or	specificity rates.	dermatological care and skin		
	high-risk		lesion triage.		
	categories				
Bakheet	Melanoma	Demonstrated strong performance in	Creating a quick, efficient		
and Al-	detection	differentiating between benign and	procedure that promises 100%		
Hamadi		malignant lesions, with an AUC of 0.94.	sensitivity and good		
et al., [17]		100% sensitivity and 95-99%	performance.		
		specificity.			

-----.

References	Purpose	Results	Future Scenarios
Abbas <i>et al.</i> ,	Melanoma	92% accuracy in categorizing	The app aims to support
[18]	detection	malignant melanomas and benign	dermatologists and healthcare
		tumors.	lesions, allowing early detection
			of skin cancer risk.
Roy et al.,	Detecting	Achieved high precision and accuracy,	Possibility of being a tool for
[19]	melanoma in	operating in real-time.	early melanoma detection.
	dermoscopic		
Bakheet	Classify malignant	Achieved high accuracy sensitivity	Provides findings that are equal
and El-	vs. benign lesions	and specificity rates.	to or better than those of state-
Nagar <i>et al.,</i>			of-the-art techniques for effective
[20]			and real-time findings.
Pangti <i>et al.</i> ,	Recognition of 40	Achieved high accuracy in top-1 and	Trained model on a sizable
[21]	diseases	rates in both silico and clinical	assessed its performance in
	uiseuses	validation studies.	internal and external validation
			datasets and a prospective
			clinical study.
Francese	Melanoma	Dermatologists found tasks to be clear	Suggests an augmented reality
et ui., [25]	uelection	support The system's functions were	lesion analysis system
		well-integrated.	
Dorj et al.,	Classify four skin	Achieved maximum accuracy,	Expanding the ABCD rule-based
[24]	cancer types	sensitivity, and specificity values for	skin cancer classification scheme
		each cancer type.	for individual cancers and
			skin cancer classification.
Sangers et	Order into	Achieved moderate specificity and	May assist patients in assessing
al., [25]	doubtful and	high sensitivity rates.	their skin lesions prior to seeing
John <i>et al</i>	Melanoma	The app identified significantly more	a medical professional.
[26]	detection	lesions as high-risk compared to	assessing certification apps using
L - J		dermatologists.	projected real-world data.
Kränke	Classification of	Achieved high sensitivity and	Assessment of diagnostic
et al., [27]	various skin	specificity rates.	performance for skin cancer
	lesions		the market
Nasiri <i>et al.</i> ,	Categorize skin	Demonstrated enhanced efficacy and	Significantly enhancing the
[28]	lesions by means	precision with a CNN-based model.	system's suggestion quality and
- 1	of deep learning		picture classification efficiency.
Dulmage	Detection of skin	Demonstrated comparable	Creation of an AI system for
et ui., [29]	lesion morphology	in classifying lesions based on	morphology of skin lesions.
		morphology.	priorogy of onthe footonol
Fujisawa	Classify malignant	Achieved high accuracy, sensitivity,	Identifying skin tumor photos
et al., [30]	and benign lesions	and specificity rates.	into 14 distinct analyses more
			with certification.

Limitations and Recommendations

While this systematic review has provided valuable insights into the current state of AI and ML on skin cancer diagnosis and detection, it is essential to acknowledge several inherent limitations of the investigation. A significant constraint is the potential existence of publication bias, as the review may not have included all relevant research, particularly unpublished or overlooked studies. Additionally, there is diversity among the included studies regarding populations, diagnostic criteria, and methodology, which could affect the broad applicability of our findings. The robustness of the synthesized evidence may also be influenced by

© 2024: Global Academic Journal's Research Consortium (GAJRC)

variations in the quality of the primary studies, such as limitations on sample size, research design, and methodology. Our findings may not fully reflect contemporary practices due to the temporal bias introduced by the temporal scope of the included research. Moreover, studies in languages other than those included in our review may have been overlooked, indicating the presence of language bias. Another limitation affecting the breadth of research for some studies is the absence of full-text publications for all relevant studies.

Upon thorough examination of the different studies, a consensus emerges regarding the importance of accessibility and availability for skin lesion detection and classification systems and apps. However, it becomes evident that many systems still fall short of fully meeting these requirements, often due to limitations such as scarce resources, complex technical systems, or a lack of explicit guidelines. There is a pressing need for extensive collaboration businesses. accessibility among specialists. programmers, and end-users to effectively address this challenge. By fostering this kind of multidisciplinary collaboration, which promotes the development of accessible and available systems, intentions can be translated into action. There is a potential for significant benefits for all individuals involved through this collaborative endeavor.

In summary, it is crucial to emphasize the development and testing of ethical and responsible AI applications in this field. This involves prioritizing patient data security and privacy while maintaining transparency throughout the algorithm creation and training phases. Establishing trust and facilitating the successful integration of AI applications in skin lesion identification and categorization within the broader healthcare landscape requires striking a balance between technological innovation and ethical considerations.

CONCLUSION

Artificial intelligence holds immense potential to transform the diagnosis and characterization of skin lesions in dermatology, particularly concerning serious conditions like melanoma. Recent advancements in deep learning, pattern recognition, and image processing have facilitated rapid and accurate analysis, enabling nearinstantaneous diagnosis. Enhanced early detection of skin cancer reduces the need for invasive procedures and enhances the likelihood of successful treatment.

Nevertheless, it is essential to acknowledge that many of these advancements still require validation in clinical settings or in collaboration with dermatologists and other medical experts. Validation is imperative to ensure both effectiveness and patient-centricity.

In conclusion, AI solutions offer opportunities to enhance the efficiency of healthcare, especially in resource-constrained settings or during emergency situations. However, exercising caution and accountability is essential, underscoring the efforts importance of collaborative with dermatologists and other medical professionals to validate and refine these technologies for effective clinical application.

Acknowledgments: None

Funding: The Authors Did Not Receive Support from any Organization for the Submitted Work

Conflicts of Interest: The authors declare no conflict of interest. The authors have no relevant financial or non-financial interests to disclose.

Ethical Approval: This article does not contain any studies with human participants performed by any of the authors.

REFERENCES

- 1. Furriel, B. C., Oliveira, B. D., Prôa, R., Paiva, J. Q., Loureiro, R. M., & Calixto, W. P. (2023). Artificial intelligence for skin cancer detection and classification for clinical environment: a systematic review. *Frontiers in Medicine*, 10.
- 2. Leiter, U., Keim, U., & Garbe, C. (2020). Epidemiology of skin cancer: update 2019. *Sunlight, Vitamin D and Skin Cancer*, 123-139.
- Lieber, C. A., Majumder, S. K., Ellis, D. L., Billheimer, D. D., & Mahadevan-Jansen, A. (2008). In vivo nonmelanoma skin cancer diagnosis using Raman microspectroscopy. *Lasers in* Surgery and Medicine: The Official Journal of the American Society for Laser Medicine and Surgery, 40(7), 461-467.
- Woodhead, A. D., Setlow, R. B., & Tanaka, M. (1999). Environmental factors in nonmelanoma and melanoma skin cancer. *Journal of Epidemiology*, 9(6sup), 102-114.
- 5. Toğaçar, M., Cömert, Z., & Ergen, B. (2021). Intelligent skin cancer detection applying autoencoder, MobileNetV2 and spiking neural networks. *Chaos, Solitons & Fractals, 144,* 110714.
- 6. Balaha, H. M., & Hassan, A. E. S. (2023). Skin cancer diagnosis based on deep transfer learning and sparrow search algorithm. *Neural Computing and Applications*, *35*(1), 815-853.
- Siegel, R. L., Miller, K. D., & Jemal, A. (2019). Cancer statistics, 2019. *CA: a cancer journal for clinicians*, 69(1), 7-34.

- 8. Divya, D., & Ganeshbabu, T. R. (2020). Fitness adaptive deer hunting-based region growing and recurrent neural network for melanoma skin cancer detection. *International Journal of Imaging Systems and Technology*, *30*(3), 731-752.
- 9. Organization WH. Radiation: Ultraviolet (UV) radiation and skin cancer. 2017. 2022.
- 10. Cancer Today [Internet]. [cited 2024 Jan 31]. Available from: https://gco.iarc.fr/today/
- 11. Melarkode, N., Srinivasan, K., Qaisar, S. M., & Plawiak, P. (2023). Al-powered diagnosis of skin cancer: a contemporary review, open challenges and future research directions. *Cancers*, *15*(4), 1183.
- 12. Dermoscopy Criteria Review | AccessDermatologyDxRx | McGraw Hill Medical [Internet]. [cited 2024 Jan 31]. Available from: https://dermatology.mhmedical.com/content.as px?bookid=2804§ionid=238013993
- 13. Leiter, U., Keim, U., & Garbe, C. (2020). Epidemiology of skin cancer: update 2019. *Sunlight, Vitamin D and Skin Cancer*, 123-139.
- 14. Citrashanty, I., & Wardiana, M. (2022). Artificial intelligence in skin cancer diagnosis: a literature review. *Bali Dermatology Venereology and Aesthetic Journal*, 33-36.
- Hogarty, D. T., Su, J. C., Phan, K., Attia, M., Hossny, M., Nahavandi, S., ... & Yazdabadi, A. (2020). Artificial intelligence in dermatology—where we are and the way to the future: a review. *American journal of clinical dermatology*, *21*, 41-47.
- Udrea, A., Mitra, G. D., Costea, D., Noels, E. C., Wakkee, M., Siegel, D. M., ... & Nijsten, T. E. C. (2020). Accuracy of a smartphone application for triage of skin lesions based on machine learning algorithms. *Journal of the European Academy of Dermatology and Venereology*, *34*(3), 648-655.
- 17. Bakheet, S., & Al-Hamadi, A. (2020). Computeraided diagnosis of malignant melanoma using Gabor-based entropic features and multilevel neural networks. *Diagnostics*, *10*(10), 822.
- Abbas, Q. (2020). Smart-Dermo: A computerize tool for classification of skin cancer using smartphone through Image Processing and Fuzzy logic.
- 19. Roy, S. S., Haque, A. U., & Neubert, J. (2018, March). Automatic diagnosis of melanoma from dermoscopic image using real-time object detection. In 2018 52nd annual conference on information sciences and systems (CISS) (pp. 1-5). IEEE.
- 20. Bakheet, S., & El-Nagar, A. (2021). A deep neural approach for real-time malignant melanoma detection. *Appl. Math. Inf. Sci*, *15*, 89-96.
- 21. Pangti, R., Mathur, J., Chouhan, V., Kumar, S., Rajput, L., Shah, S., ... & Gupta, S. (2021). A machine learning-based, decision support, mobile phone application for diagnosis of

common dermatological diseases. *Journal of the European Academy of Dermatology and Venereology*, *35*(2), 536-545.

- 22. Alizadeh, S. M., & Mahloojifar, A. (2018, November). A mobile application for early detection of melanoma by image processing algorithms. In 2018 25th National and 3rd International Iranian Conference on Biomedical Engineering (ICBME) (pp. 1-5). IEEE.
- 23. Francese, R., Frasca, M., Risi, M., & Tortora, G. (2021). A mobile augmented reality application for supporting real-time skin lesion analysis based on deep learning. *Journal of Real-Time Image Processing*, *18*, 1247-1259.
- 24. Dorj, U. O., Lee, K. K., Choi, J. Y., & Lee, M. (2018). The skin cancer classification using deep convolutional neural network. *Multimedia Tools and Applications*, *77*, 9909-9924.
- Sangers, T., Reeder, S., van der Vet, S., Jhingoer, S., Mooyaart, A., Siegel, D. M., ... & Wakkee, M. (2022). Validation of a market-approved artificial intelligence mobile health app for skin cancer screening: a prospective multicenter diagnostic accuracy study. *Dermatology*, 238(4), 649-656.
- 26. Jahn, A. S., Navarini, A. A., Cerminara, S. E., Kostner, L., Huber, S. M., Kunz, M., ... & Maul, L. V. (2022). Over-detection of melanoma-suspect lesions by a CE-certified smartphone app: performance in comparison to dermatologists, 2D and 3D convolutional neural networks in a prospective data set of 1204 pigmented skin lesions involving patients' perception. *Cancers*, 14(15), 3829.
- Kränke, T., Tripolt-Droschl, K., Röd, L., Hofmann-Wellenhof, R., Koppitz, M., & Tripolt, M. (2023). New AI-algorithms on smartphones to detect skin cancer in a clinical setting—A validation study. *Plos one*, *18*(2), e0280670.
- Nasiri, S., Helsper, J., Jung, M., & Fathi, M. (2020). DePicT Melanoma Deep-CLASS: a deep convolutional neural networks approach to classify skin lesion images. *BMC bioinformatics*, *21*, 1-13.
- 29. Dulmage, B., Tegtmeyer, K., Zhang, M. Z., Colavincenzo, M., & Xu, S. (2021). A point-of-care, real-time artificial intelligence system to support clinician diagnosis of a wide range of skin diseases. *Journal of Investigative Dermatology*, 141(5), 1230-1235.
- 30. Fujisawa, Y., Inoue, S., & Nakamura, Y. (2019). The possibility of deep learning-based, computer-aided skin tumor classifiers. *Frontiers in medicine*, *6*, 478177.
- Fitzgerald, R. C., Antoniou, A. C., Fruk, L., & Rosenfeld, N. (2022). The future of early cancer detection. *Nature medicine*, *28*(4), 666-677.

^{© 2024:} Global Academic Journal's Research Consortium (GAJRC)